Advances in Markov chain Monte Carlo methods
نویسنده
چکیده
Probability distributions over many variables occur frequently in Bayesian inference, statistical physics and simulation studies. Samples from distributions give insight into their typical behavior and can allow approximation of any quantity of interest, such as expectations or normalizing constants. Markov chain Monte Carlo (MCMC), introduced by Metropolis et al. (1953), allows sampling from distributions with intractable normalization, and remains one of most important tools for approximate computation with probability distributions. While not needed by MCMC, normalizers are key quantities: in Bayesian statistics marginal likelihoods are needed for model comparison; in statistical physics many physical quantities relate to the partition function. In this thesis we propose and investigate several new Monte Carlo algorithms, both for evaluating normalizing constants and for improved sampling of distributions. Many MCMC correctness proofs rely on using reversible transition operators; often these operators lead to slow diffusive motion resembling a random walk. After reviewing existing MCMC algorithms, we develop a new framework for constructing non-reversible transition operators that allow more persistent motion. Next we explore and extend MCMC-based algorithms for computing normalizing constants. We compare annealing, multicanonical and nested sampling, giving recommendations for their use. We also develop a new MCMC operator and Nested Sampling approach for the Potts model. This demonstrates that nested sampling is sometimes better than annealing methods at computing normalizing constants and drawing posterior samples. Finally we consider “doubly-intractable” distributions with extra unknown normalizer terms that do not cancel in standard MCMC algorithms. We propose using several deterministic approximations for the unknown terms, and investigate their interaction with sampling algorithms. We then develop novel exact-sampling-based MCMC methods, the Exchange Algorithm and Latent Histories. For the first time these algorithms do not require separate approximation before sampling begins. Moreover, the Exchange Algorithm outperforms the only alternative sampling algorithm for doubly intractable distributions.
منابع مشابه
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. Aft...
متن کاملRecent Advances in Semiparametric Bayesian Function Estimation
Common nonparametric curve tting methods such as spline smooth ing local polynomial regression and basis function approaches are now well devel oped and widely applied More recently Bayesian function estimation has become a useful supplementary or alternative tool for practical data analysis mainly due to breakthroughs in computerintensive inference via Markov chain Monte Carlo simulation This ...
متن کاملMonte Carlo methods for Bayesian palaeoclimate reconstruction
In palaeoclimate reconstruction, the natural modelling direction is forwards from climate to sensors to proxy measurements. Statistical methods can be used to invert this direction, making climate inferences from proxy measurements. Among these methods, the Bayesian method would seem to deal best with the substantial epistemic uncertainties about climate, and about its impact on sensors. The ma...
متن کاملde Finetti Priors using Markov chain Monte Carlo computations
Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or ...
متن کاملFractional Langevin Monte Carlo: Exploring Levy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
Along with the recent advances in scalable Markov Chain Monte Carlo methods, sampling techniques that are based on Langevin diffusions have started receiving increasing attention. These so called Langevin Monte Carlo (LMC) methods are based on diffusions driven by a Brownian motion, which gives rise to Gaussian proposal distributions in the resulting algorithms. Even though these approaches hav...
متن کامل